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Multigroup Diffusion Package in ALE3D

Motivation: Simulate (rapid) heating and cooling of SiO2 for
damage mitigation on final NIF optics

General application: energy transport in refractive lossy media

Radiation, although often ignored in relatively low temperature
regimes (T < 8000 ◦K) due to its low energy content, is still an
efficient vehicle for energy (heat) transport and loss

Examples:

• Campfire on a cold night

• Heat leakage through evacuated part of thermos

• Cooling of hot glass
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Outline

• Typical experiment

• Derivation of ALE3D radMGDiff equations

• Boundary and interface conditions

• Material properties (SiO2)

• Results

- 1D Slab cooling
- 1D Comparison with Lasnex

• Ongoing work; open questions
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Damage mitigation (courtesy M. Matthews et al)
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Experimental setup (courtesy S. Yang, LLNL)
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Photon propagation (Pomraning)

Substitute
f = f0 exp[i(k · r− ωt)], ω = ωr(r,k, t) + i ωi(r,k, t)

into Maxwell’s equations. Get...
Motion of wave packet (Hamilton’s equations) ⇒

Equations of photon propagation (ωr = 2πν):

dr/ds = Ω

dΩ/ds = (1/n) [∇n − Ω (Ω · ∇n)]

dν/ds = −(ν/c) ∂tn

dr/dt = vg Ω

Refractive index n
.
= ckw/ω, kw = |k|

Homogeneous medium: (∇n, ∂tn = 0) ⇒ (dν/ds, dΩ/ds = 0)
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Derivation of ALE3D diffusion equations

Add emission, absorption to Pomraning’s streaming operator
Assume homogeneous medium (∇n = 0 = ∂tn)

n2
[
(1/vg) ∂t(I/n2) + Ω · ∇(I/n2)

]
= κ [n2 Bν(T ) − I ]

Bν(T ) =
2hν3/c2

exp(hν/kBT ) − 1

vg
.
= group speed; phase speed vp

.
= c/n

1/vg
.
= (∂kw/∂ω) = (n + ν∂νn)/c

.
= 1/vp + (ν∂νn)/c

h, kB = Planck, Boltzmann constants

opacity κ = 4πk/λ, wavelength λ = c/ν

(n, k)
.
= dimensionless (refractive, absorption) indexes
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Intensity moments

Spectral energy density E, flux F, and pressure tensor P:

E
.
= (1/vg)

∫

4π

dω I

F
.
=

∫

4π

dω Ω I

P
.
= (1/vg)

∫

4π

dω ΩΩ I ,

Take moments of intensity equation

Close system: ignore ∂t(F/n2) and P → (E/3) I
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ALE3D RadMGDiff module solves

∂tE = ∇ ·
vg

3κ
∇E + κ vg [ 4π n2 Bν(T )/vg − E ]

ρcv ∂tT = ∇ · km∇T + S
︸ ︷︷ ︸

op−split

−

∫
∞

ν0

dν κ vg [ 4π n2 Bν(T )/vg − E ]

vg = vg( ν, n); (until have better data, vg
.
= vp = c/n)

n = n(ν)
.
= refractive index

k = k(ν)
.
= absorption index; κ = 4πk/λ = 4πkν/c;

S = external energy source (laser)
ν0

.
= upper bound of opaque interval (Larsen et al)

Usual multigroup diffusion: vg → c, n → 1
LTE: E depends on T and material-dependent n, vg
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Boundary & (Interior) Interface conditions
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Reflectivity, boundary, interface conditions

Reflected fraction of incident intensity R(µ) obtained from
Snell’s law(s), energy conservation, Maxwell’s equations

Snell’s law(s) relate incident, refracted angles, material indexes
n, k across interface

In lossy media (k 6= 0), Snell’s law is complicated (complex)
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Boundary conditions (Larsen et al)

At boundary, in medium,

I = Ib(Ω) = Ib,t(Ω) + Ib,r(Ω) (1)

“Transmitted” radiation:

Ib,t(Ω) = [ 1 − R(µ) ]Bν(Ta)

“Reflected” radiation:

Ib,r(Ω) = R(µ) I(Ω′) , Ω
′ = Ω − 2 (n̂ · Ω) n̂

For diffusion, satisfy Eq.(1) in integral sense:

2π

∫ 1

0
dµ µ (I − Ib) = 0
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Boundary conditions (air-glass interface)

E +

(
1 + 3r2

1 − 2r1

) (
2

3κ

)

(n̂ · ∇E) = 4π n2 Bν(Ta)/vg

n̂ ·(km∇T ) = hm(Ta−T )+π (1−2r1)n2
0

∫ ν0

0
dν [Bν(Ta)−Bν(T )]

Ta = external temperature
r1, r2 = moments of reflectivity R( ν, n, k), rj

.
=

∫ 1
0 dµ µj R(µ)

hm = convection coefficient
( 0, ν0)

.
= opaque interval (strong coupling) (Larsen et al)

Conventional Milne conditions: r1, r2 → 0
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(Interior) interface conditions (materials a, b) (WIP)

Diffusion approximation:

I(Ω) =
vg

4π

[

E + 3Ω ·

(
1

3κ
∇E

)]

Integrate over hemisphere in side b:

vg

n2

[

E −

(
1 + 3r2

1 − 2r1

)(
2

3κ

)

(n̂ · ∇E)

]

=

vg,a

n2
a

[

Ea −

(
1 − 3r2,a

1 − 2r1,a

) (
2

3κa

)

(n̂ · ∇Ea)

]

In corresponding hemispheres, rj =
∫ 1
0 dµ µj R(µ)
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Interface conditions (materials a, b) (WIP)

Radiation interface condition of form:

AaEa + Ban̂ · ∇Ea = AbEb + Bbn̂ · ∇Eb

Challenge: As (na, ka) → (nb, kb), ensure discretization of
interface condition satisfies:

∂tE = ∇ ·
vg

3κ
∇E + κ vg [ 4π n2 Bν(T )/vg − E ]

T equation: ρcv ∂tT = ∇ · km∇T , unaffected by interface
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Results: RadCool test problem

• Bouchut parameters:

ρcv = 2.201 · 107 (erg/cc ◦K)

km = 2.201 · 105 (erg/cm sec ◦K)

• 1D: 0 < Z < 0.5 cm

• Initial conditions: T = Tr = 2500 ◦K

• Boundary conditions:

Z = 0.0: Ta = 298.15 ◦K (air)

Z = 0.5: symmetry

• Display timehist: max & bdry T and Tr

T 4
r

.
= 1

4σ

∑G
i=1 vi Ei/n

2
i , σ = Stefan-Boltzmann const
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On retaining ∂tE...

For low T applications, ∂tE is often ignored (Larsen et al)
ρcv ≫ 4aT 3

r and ∆t is “large” (c = ∞ assumption)

∂tE may be of same order as other terms in E equation:

ν = 0.12 eV, κ ≈ 4 · 104, cm−1

∆t = 10−7 s, vg ∼ c, ∇ ∼ 1/ℓ, ℓ = specimen size (1 cm)

(∂tE : ∇ ·
vg

3κ
∇E) ∼ (E/∆t : c E/3κℓ2) ∼ (40 : 1)
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RadCool test problem; effect of retaining ∂tE

Define Mt,r multiplier of ∂tE term

Effect of Mt,r on max radiation temperature max(Tr):

t 10−15 10−11 10−10 10−9 10−8

Mt,r = 1.0 2500 2464 2169 1560 1548
Mt,r = 10−14 1548 1548 1548 1548 1548

∂tE enables monitoring rapid changes in thermal fluxes
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Results: RadCool2 problem; LASNEX vs. ALE3D

Two “materials”

• Mat1: 0.0 < Z < 0.5 cm; Bouchut parameters ρcv, km

• Mat2: 0.5 < Z < 1.0 cm; Bouchut parameters ×10−1

• For Mat2, n, k vary linearly w/ T ; (100–5000), 10x increase

• Initial conditions: T = Tr = 2500 ◦K

• Boundary conditions: Ta = 298.15 ◦K
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RadCool2 Test problem; comparison of runs

LAS A3D(n=1)

max(Tm) 2477.3 2478.5
max(Tr) 1555.6 1549.4

Tm,l 2428.8 2404.2
Tr,l 1424.5 1411.3

Tm,r 1687.0 1578.7
Tr,r 1328.9 1286.2

Em · 10−3 1.4704 1.4675
Er · 10

−15 1.9469 1.9194
Ec · 10

−5 4.2706 4.5668

Table: Slab cooling problem; ALE3D, LASNEX comparison; 16
groups; t = 1 s; maximum, left-side, right-side temperatures (◦K);
matter, radiation, coupled energies (J/radian)
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Open questions

Are interface conditions limiting case of Pomraning’s equations
for spatially varying n, k?

• Interface condition has abrupt change in n, k

• Pomraning assumes weak dependence ω(r, t)

• ω = ckw/n, (kw = wave vector)

Include ∇n term? [∇n = (∂n/∂T )∇T ]

Include dν/ds? [= −(ν/c) ∂tn = −(ν/c) (∂n/∂T ) (∂T/∂t)]

If ∂k/∂T 6= 0 ⇒ ∂n/∂T 6= 0 . . .
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Temperature dependence of k

k(ν) has a strong T dependence for certain ν (λ)

McLachlan, Meyer (M&M,1987): k = a(ν) + b(ν)T

M&M give a, b at select wavelengths: λ ∈ ( 9.6, 10.6) µm

Yang et al, (LLNL, 2009) present a, b for λ = 4.6 µm

λ 10.6 4.6
ν (eV) 0.117 0.270
a(ν) 1.82 · 10−2 2.45 · 10−4

b(ν) 1.01 · 10−4 6.39 · 10−7

κ−1
T=25 40.7 1403

κ−1
T=1800 4.22 262

T in (◦C), κ−1 in (µm)

For λ = 10.6µm, k has 10× variation over 1800 degrees!
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k(λ) Temperature dependence
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Refraction n, absorption k indexes are related

Cauchy integral theorem and assumptions:

• limν→∞(n − 1) < 1/ν

• limν→∞(k) < 1/ν,

yield Kramers–Kronig relation:

n(ν) = 1 +
2

π
P

∫
∞

0

ν ′ k(ν ′) dν ′

(ν ′)2 − ν2

k(ν) =
−2ν

π
P

∫
∞

0

n(ν ′) dν ′

(ν ′)2 − ν2

If k depends on temperature, so does n
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That’s all, folks
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Results: 2D Laser irradiated disk (Vignes, Stölken)

Domain: 0 ≤ R ≤ 2.5, 0 ≤ Z ≤ 1.0 cm

Compare runs: Heat Conduction only, HC+rad

Radiation: 32 groups, Kitamura “cold” opacities

Laser source: Ilzr exp(−κν,lzr Z)

λlzr = 10.6µm, or λlzr = 4.6µm

Constant material pties:

cv = 103 (J/kg ◦K), km = 2.2 (W/m ◦K)

κ−1
lzr = 6.7µm (λ = 10.6), κ−1

lzr = 516µm (λ = 4.6)
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Constant material properties

λ = 10.6µm
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